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Abstract 

The daily returns on leveraged and inverse-leveraged exchange-traded funds 
(LETFs) are a multiple of the daily returns of a reference index. Because LETFs 
rebalance their leverage daily, their holding period returns can deviate substantially from 
the returns of a leveraged investment. While about half of LETF investors hold their 
investments for less than a month, the standard analysis of these investments uses a 
continuous time framework that is not appropriate for analyzing short holding periods, 
so the true effect of this daily rebalancing has not been properly ascertained. 

In this paper, we model tracking errors of LETFs compared to a leveraged 
investment in discrete time. For a period lasting a month or less, the continuous time 
model predicts tracking errors to be small. However, we find that in a discrete time 
model, daily portfolio rebalancing introduces tracking errors that are not captured in the 
continuous time framework. On average, portfolio rebalancing accounts for 
approximately 25% of the total tracking error, and in certain scenarios the rebalancing 
tracking error could rise to as high as 5% in 3 weeks and can dominate the total tracking 
error. Since investors in LETFs have short average holding periods and high average 
turnover ratios, the effects of portfolio rebalancing must be accurately accounted for in 
the analysis of LETF returns. 

 

1  Introduction 
 
Exchange Traded Funds (ETFs) were introduced in the US markets in 1993 and their number 

has grown rapidly ever since. By the end of January 2011 there were 943 ETFs with combined 
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assets of more than $1 trillion.2  Originally, ETFs tracked broad-market indexes such as the 

S&P 500 index. More recently, ETFs with more complicated exposures to underlying assets and 

more complex investment strategies have been issued.  For example, the daily return on the 

leveraged “Ultra S&P 500 ProShares” (SSO) is twice the daily return of the S&P 500 Index. 

Leveraged and Inverse ETFs (LETFs) were first issued in the United States in June 2006 by 

the ProFunds Group; there are now more than 400 LETFs with combined assets of more than 

$120 billion.3  

Although LETFs are a relatively new type of ETF, there is an emerging literature 

describing their properties.  (Cheng & Madhaven, 2009) and (Avellaneda & Zhang, 2010) 

establish the properties of LETFs in a continuous  time framework. They demonstrate the 

potentially substantial deviation between the underlying index return and the LETF return due to 

the daily rebalancing of the LETF. Most notably, they develop the following relationship 

between the return of an LETF and the return of its underlying index for a long holding period: 

 1 + ��
� = �1 + ��

���exp�� − ��

2
���� (1) 

where � is the leverage size of the LETF, ��
� and ��

� are the holding period returns of LETF and 

the underlying index from time 0 to �, and �	denotes the volatility of the underlying index.4 As 

indicated by the equation, holding all else equal, the higher the volatility of the underlying 

index, the lower the return of an LETF. 

(Guedj, et al., 2010) investigate these tracking errors between LETFs and their 

underlying indices.  They illustrate that an LETF could potentially perform much worse than its 

reference index, especially when realized volatility is high.  The same point is also made in (Lu, 

et al., 2009) which analyzes the long term behavior of LETFs. (Avellaneda & Zhang, 2010) 

study LETF models in continuous and discrete time. They conclude that in discrete time 

settings, the return of LETFs are path-dependent, relying on the realized variance in the holding 

period.  They also consider expense ratios and borrowing costs associated with LETFs. 

However, they assume the effects of daily rebalancing on the overall performance of an LETF 

                                                 
2 See Investment Company Institute (ICI) - http://www.ici.org/research/stats/etf 

3 Data source (Bloomberg). 

4 This model and all models presented in this paper assume constant volatility. 
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are small for short holding periods and therefore focus on long holding periods.  All these papers 

highlight how costly it can be for an investor to hold an LETF over a long holding period as the 

LETF return will likely deviate substantially from the return of a leveraged investment that does 

not rebalance its portfolio daily. 

When held for a short time, the difference between the returns to LETFs and to 

traditional leveraged investments is limited, which is why LETF issuers recommend using 

LETFs for only short term trading strategies.5 However, the effect of discretization errors 

created by the daily rebalancing of LETF portfolios is not well understood.  To achieve the 

desired leveraged returns of the underlying index, a LETF manager must either borrow or short 

the same portfolio as the index, typically on a daily basis. In this paper, we investigate the 

properties and characteristics of investing in an LETF over a short holding period. We model 

and analyze the return and tracking error of LETFs in a discrete time framework, allowing for a 

more complete analysis of short holding periods. 

First, as a benchmark case, we follow the literature and perform an analysis in 

continuous time, modeling an LETF’s returns and tracking errors. We calculate and compare the 

expected return and volatility of an LETF to a fixed-initial-leverage investment such as one 

purchased through a margin account. We analyze the criteria necessary for an LETF to 

outperform a fixed-initial-leverage investment on the same underlying index. For short holding 

periods, the probability that fixed-initial-leverage investments outperform LETFs is about 68%. 

The 68% probability is invariant with changes in the underlying mean, volatility, leverage size, 

and holding time.  When a holding period is short, the returns of LETFs track those of fixed-

initial-leverage investments closely, but they deviate substantially when held for a long period 

of time. 

Second, we develop a model of LETF returns in a discrete time setting, i.e., with daily 

rebalancing (in contrast to continuous time models which only rely on the sample mean of 

returns). In the discrete time formulation, the holding period returns of LETFs are a function 

of the sample mean and sample variance of the daily returns of the index. As a consequence, 

there are additional tracking errors presented in the discrete time setting related to magnitude of 

the sample variance.  When the length of the holding period increases, the discrete time results 

                                                 
5 See footnote 3 



4 
 

converge to the continuous time results as the sample variance converges to the expected 

variance.  Over short holding periods however, when continuous time models predict minimal 

tracking error, the extent of tracking errors due to rebalancing can be significant. We quantify 

this additional tracking error and calculate its magnitude under different scenarios. 

The discrete time model is more appropriate than the continuous time model for LETFs 

because LETFs only rebalance their leverage once a day. Continuous time models effectively 

assume that rebalancing is performed continuously. This may be a reasonable approximation 

for long holding periods, but when the holding period is short, the assumption of a continuous 

rebalancing creates a discrepancy between the modeled returns and likely realized returns. 

Using a discrete time setting, we model daily rebalancing and obtain more accurate predictions 

of the distribution of LETF returns for short holding periods.   

Based on our analysis of LETFs, we find that almost 50% of the existing funds have an 

average holding period of less than a month. We calculate the holding periods for each LETF 

when tracking errors between discrete and continuous returns are large. The large discrepancies 

occur when the realized volatility is substantially greater than the expected volatility. We explain 

several other reasons that possibly explain the large discrepancies, including the imperfectness 

in leverage and stochastic volatilities over time. 

2    Benchmark Case - Continuous Time Model 
 

We start by developing a continuous time analysis of LETF returns and properties similar 

to the one developed in (Cheng & Madhaven, 2009). We then develop the discrete time model 

and compare the results to the continuous time models for short holding periods. In contrast to 

(Cheng & Madhaven, 2009), we concentrate our analysis on the comparison of the LETF 

properties with those of a fixed-initial-leveraged investment. A fixed-initial-leveraged investment 

earns a fixed multiple of the holding period return o n  an index and is achieved by borrowing 

and investing in an ETF, so for simplicity we will refer to this strategy as an METF.6
 

                                                 
6 As our focus is on holding periods measured in days not months and the cross-sectional variation in holding 

period returns, we ignore borrowing costs. 
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2.1     Model 
 

We perform the continuous time analysis on three stochastic processes:  the levels of the 

underlying index (��), the LETF (��) and the METF (��).  Without loss of generality, we 

simply set the starting levels of all three processes to be the same �� = �� = �� .  In the 

following analysis we explore evolutions among these three processes. 

Suppose the underlying index level follows a geometric Brownian motion 

 	
�
� = 	�	� + 	�	� 
(2) 

where 	 and � are the expected mean and volatility of the return. When set in a risk-neutral 

world, 	 = 
 − � where � is a dividend yield and 
 is a risk-free rate (Hull, 2008). An LETF 

with a leverage � also follows a geometric Brownian motion as  

 	����

= � 	
�
� = ��	� + ��	� 
(3) 

This implies that the LETF leverages up the index return � times and volatility |�| times.  

Since the margin account leverages up the holding period return of the index, at any time �, the level of an METF �� satisfies the following relation with the underlying index: 

 ����

= 	 �
�
� − 1� 	� + 1 = � 
�
� − �� − 1� (4) 

Applying Itô’s Lemma to ����, �� we obtain a stochastic partial differential equation for ��: 

 	�� = ��
�	� + ��
�	��  

= 	���� + �� − 1����	� + ���� + �� − 1����	�� (5) 

Note that the equation has the term �� which implies that the value of an METF, unlike �� and ��, is dependent on the initial value at the starting time � = 0. 

Since both �� and �� follow a geometric Brownian motion, at any given time � they are 

log-normally distributed: 

�� = ��	exp �	 − �� 2⁄ �� + �√��� 

 �� = ��	exp ���� − ���� 2⁄ �� + ��√��� (6) 
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where � is a standard normal variable. For METFs, instead of solving the partial differential 

Equation (5), we use the mapping function (4) to get the functional form for 	��  at any time. 

We summarize the mean and standard deviation of the holding period returns ��
�  , ��

� and ��
� 

in Table 1.7 

Table 1: Summary of the Holding Period Returns 

 Mean Standard Deviation 

Index Return ��
� ��� − 1 ���������� − 1� 

LETF Return ��
� ���� − 1 ������������� − 1� 

METF Return ��
	 �(��� − 1) 

|�|���������� − 1� 
 

Because the levels of the LETF �� and index �� share the same sample path, the quantity � should be identical for ��  and ��  in Equation (6). Cancelling the variable � in the equation 

results the relationship between �� and �� previously given in Section 1 (Avellaneda & Zhang, 

2010) and (Cheng & Madhaven, 2009) 

 ����

= 1 + ��
� = �
�
��

�

exp�� − ��

2
���� 

= �1 + ��
���exp�� − ��

2
���� 

(7) 

We prove this equation using Itô’s Lemma. We define a new process �� which is the ratio 

of 
��

��

 and ���
��
��:  

����, ��, �� =

�����������
 

Applying Itô’s Lemma on the process �� = ��, ��, ��: 

                                                 
7 The holding period returns are defined as ��

� =
��

��

− 1, ��
� =

��

��

− 1 and ��
� =

��

��

− 1. According to the 

payoff property of the METF, its holding period return satisfies ��
� = ���

�. 
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 	�� = �����
� �
� +
����� +

������

���� +
1

2

�����
�� ��
��� +
1

2

�������
�
�������

+
�����
���

��
��������	� + �����
� �
� +
������

����� 	��  

=
1

2
�� − ��� ����

�
�
��

� ��	� =

1

2
�� − �������	� 

(8) 

Note that the ��� term is canceled in the calculations, thus the stochastic partial 

differential equation becomes a static partial differential equation, which has a solution 

�� = exp�� − ��
2

���� �� 

This completes the proof of Equation (7).	 
Combining Equations (4) and (7), the relationship between �� and �� follows  

 ����

= 1 + ��
� = ��� �� + � − 1⁄ � ��

exp�� − ��

2
���� 

= ���
	 + �� ��

exp�� − ��

2
���� 

(9) 

The tracking error between LETF and METF is a process defined as 

 � !"#$%&	'  = �� − �� = 
����
	 − ��

�� 

= 
� ����
� − �1 + ��

���exp�� − ��

2
���� + 1� 

(10) 

At given time �, the expected tracking error is 

���
����� 	!

" = ���#�� − #��� − � + 1� 
This quantity is small when time � is small, while decreasing to negative infinity as � increases. 

2.2     Model Implications 
 

There are several important implications about LETF returns in general and for shorter holding 

period in particular to discuss before developing the discrete-time model. 

2.2.1     Long-Term Returns 
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First, from Equations (4) and (7), the levels �� and ��  are mapped in a one-to-one relationship 

to the underlying index  ��.8    That is, the values of the LETF and the METF at time � depend 

on the value of the index at �, ��, but not on the path over time to �. This mapping holds in a 

continuous time framework but not in a discrete-time framework.  

 

In Figure 1 we plot a comparison of a one year return for an LETF (��
�) and an METF 

(��
�) compared to the return of the underlying index (��

�  ).  We give two examples: leverage � = 3 (in Panel (a)) and � = −3	(in Panel (b)).  In the same figure, we also plot on the second 

axis the probability density function for the underlying index (��
�), which follows a log-normal 

distribution. 

 

Figure 1: The plot of holding period returns of LETF $	

 and METF $	

� versus $	
� 

assuming % = &'%, ( = )'%, * = & year and leverage + = ). Since the index holding 
period return & + $	

� =
��

��
 follows a log-normal distribution, we also plot the probability 

density function of $	
� as a reference (right axis) 

 

 

                                                 
8 Or equivalently, the holding period returns ��

� and ��
� are one-to-one mapped to the index return ��

�. 
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(a) Leverage � = 3 

 

(b) Leverage � = −3 

Figure 2: For the Leverage + = 	) case, in addition to Figure 1 (a), the tracking error $	
�−$	


 is plotted. 
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First, note that in Panel (a) for index returns between -20.6% and 46.2% the return of an 

METF dominates that of the LETF.  The superimposed probability density highlights the fact 

that the majority of the probability likelihood is in the range over which the METF 

dominates the LETF, making a long term investment in an LETF substantially worse than an 

METF.  This is clear from Equation (7): for long holding periods (in this example a year) an 

LETF will perform worse than a fixed-initial-leveraged investment. Moreover, if the underlying 

index had a small positive return the LETF (with positive leverage) can under-perform not only 

the METF but also the underlying index, due to the cost associated with the daily rebalancing of 

the leverage. Similar behavior holds with the negative leveraged LETF. The METF will suffer 

100% losses after an accumulated index loss of -33% for a positive 3x leverage (and 33% for 

a negative 3x leverage). In contrast, an LETF is never fully wiped out as it rebalances its 

leverage daily and will converge to a value of zero but will never reach it. 

Second, the term	exp ���	
�

���� in Equation (7) is always less than one, regardless of 

the leverage size (which is enumerated in the set ,−3, −2, −1,2,3-). This implies that when �� 
equals ��, or when the holding period return of the index and the margin account are both zero 

(��
� = ��

� = 0), the holding period return of the LETF is always negative and underperforms 

the index and METF. This implication is reflected in Figure 2 which directly plots the tracking 

error of these two accounts ��
� − ��

� versus the realized holding period return ��
�. The tracking 

error line crosses the x-axis at the same points regardless of the leverage size. 

On the other hand, when the holding period return of ��
�  is significantly positive 

(increasing to infinity) or negative (decreasing to -100%), the LETF returns exceed the return 

of the index, see Figure 1. As � increases, the term exp ���	
�

���� decreases to zero, which 

implies that 1 + ��
� becomes significantly less than 1 + ��

���  but as Figure 1 illustrates, this 

does not imply it is worse than the index value 1 + ��
�.  

2.2.2  Short-Term Returns 
 

Using a Taylor expansion of the right hand side of Equation (7), we can see that when � is 

small, the return curves of LETF and METF intersect at two points, which are approximated by ��
�~ ± �√�.  Since these techniques are used extensively in later sections of the paper, we 

restate the derivation here. 
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��
� = 1 + ��

���exp�� − ��
2

���� − 1 

= �1 + ���
� +

�� − 1���
���

2!
+ ⋯ � ∙

.
/01 +

� − ��
2

��� +
1� − ��

2 ���2�
2!

+ ⋯

3
45 − 1 

= 	���
� +

�� − 1�
2

��
��� − ���� + 6��

���� + 6��� 
The second line of this result is derived from a Taylor expansion of two functions 7�� = 1 + ���  and 7�� = exp��.9  The omitted terms in the series are in the order of 

6��
���� + 6��� . When ��

� and 
��	

�
���  are sufficiently small (or when �  is sufficiently 

small), the following result holds 

 ��
�~���

� +
��� − 1�

2
����

��� − ���� (11) 

Recall that the holding period return of the METF follows ��
� = ���

�. The tracking error 

between the METF and LETF returns (from Equation (10)) is further simplified as  

�
����� 	!

 = ��
� − ��

�~ −
�� − 1�

2
��

��� − ���� 
This expression implies that the LETF outperforms the METF when ��

� > �√� or ��
� < −�√�. 

When holding both LETF and METF for a short time, i.e., � less than a week or a month, the 

result (11) holds with a high degree of accuracy.  The locations of the intersection points 8±�√�9 are independent of the leverage size �. 

In addition, since 
��

��
= 1 + ��

� follows the lognormal distribution  

��~:; <;
=�> �	 − �� 2⁄ ��, �√�� 
we calculate the probability that the METF outperforms the LETF as ?
;@��

� < ��
��	 

~	?
;@8−�√� < ��
� < 	�√�9	 

~	?
;@8−�√� < >; 1 + ��
�� < �√�9 

                                                 
9 The Taylor Series expansion results are ���� = �1 + ��
 = 1 + �� + ��� − 1���/2 + ⋯  and ���� =

exp��� = 1 + � + ��/2! + ��/3! + ⋯ 
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= ?
;@8−�√� < � + 	 − �� 2⁄ ����√� < �√�9 	= ?
;@−1 − 	 − �� 2⁄ �� < � < 1 − 	 − �� 2⁄ ��� 
~?
;@−1 < � < 1� 
= 68.27% 

where � is a standard normal variable. The second line of the approximation re-applies the 

Taylor expansion of the function A = log1 + �� = ∑ −1���� �

�
= � − �	

�
+ ⋯�

���  . Since 

1 + ��
�� follows a lognormal distribution, log1 + ��

�� follows a normal distribution 

< �	 − �� 2⁄ ��,�√�� . When �  is sufficiently small, the term 1 − 	 − �� 2⁄ ��  is 

approximately 1. 

The probability that the METF value exceeds the LETF value is very high when � is 

small. For example, using the parameter assumptions in Figure 1 (a) 	 = 10%, � = 30%, and 

leverage � = 3 , but setting � = 0.01 , the tracking error equals zero at ��
� = 	3.12%  and ��

� = 	−2.88% , which are close to ±�√� = 	±3.00%.  The probability that the LETF 

underperforms the METF is 68.27%. We also observe that this probability value is relatively 

independent of the values of 	 and �. If � = −3 as in the Figure 1 (b) case, the two intersection 

points are ��
� = 	2.94%  and ��

� = 	−3.06% . This implies that the result is also quite 

independent of the amount of leverage. 

For long holding periods, the probability that the METF value exceeds the LETF value 

loses some accuracy but it is still a good approximation. For example, using the above 

parameters but changing the time �	 = 	1, the tracking error curve intersects zero at ��
� = 46.2% 

and ��
� = −20.6%  which shift significantly from the reference value of ±�√� = ±30% . 

Therefore, based on our calculations, the value of the METF exceeds the value of the LETF with 

a true probability of 69.01%. 

3  Discrete Time Analysis 

We start with a simple example to illustrate the different tracking errors yielded by our 

continuous time and discrete time models.  The example consists of two scenarios for simple 

three-day investments.  See Figure 3 for an illustration. In Scenario 1, the daily returns of the 

index are 10%, 0%, and -10%. The corresponding LETF with a leverage ratio of 3 has daily 
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returns of 30%, 0% and -30%.  If the initial values of both accounts are �� = �� = 100, then 

the index has an ending value of 99 and the LETF ends with a value 91.  The METF has an 

ending value 97 so the tracking error is -6.  In Scenario 2, the index returns are -5%, -5%, and 

9.7% for three consecutive days, resulting in a final index value of 99.  Though we have the 

same index value and METF return as in Scenario 1, we observe that the LETF now has an 

ending level of 93.27 and the tracking error is -3.73.  

 

Figure 3: A simple example of two realized scenarios 

 

 

Though the ending levels of the index are the same for both scenarios, the ending levels 

of the LETF and the LETF’s tracking error differ. This contradicts the continuous time model 

result, which states that the level ��  is one-to-one function of �� regardless of paths. We may 

conclude that LETFs in discrete time are path dependent and therefore should not be analyzed 

with continuous time models. 

3.1  Model 

In the discrete time setting, we assume the discrete time periods are ��, ��, �� … , ��. The time 

points are equally spaced with a step size Δ� = �� − ���, � = 1, … , � , where Δ�  typically 
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represents the portfolio rebalance frequency. If daily rebalancing is assumed, we may set 

Δ� = �

���
 to represent the length of one day.  The simple return of the index in each time step is 

denoted as 
� , where 
�  follows a normal distribution with annualized expected return 	  and 

expected volatility �: 


�	~<8	Δ�, �√Δ�9 
� are also i.i.d. normal random variables. 

The index level ��  at time ��  is an accrual of daily returns �� = ��∏ 1 + 
���
��� . 

Because LETFs rebalance their portfolios once every time increment D��,����E, the simple return 

of the LETF is � times the simple return of the index: 

  �� = � � (12) 

This discrete time equation corresponds to Equation (3) in the continuous time setting. The level 

of the LETF at time �� is therefore �� = ��∏ 81 + 
��9�
��� . 

We first analyze the relationship between �� and ��.  Introducing a similar ratio as in the 

continuous time �� = ��

�
�

�
, on day zero �� = ��

��
�
. On day one, 

�� =
����� = ��

1 + 
��1 + 
��� = ��

1 + �
�1 + 
��� 

If we take the log on both sides log��� = log��� + log1 + �
�� − �	log1 + 
�� and use the 

Taylor expansion result on function log1 + ��, we have 

log��� = log��� +
� − ��

2

�� + ⋯ 

The omitted terms are in the order of 
��.  We use backward induction to calculate ���� from �� 

as 

���� =
��������� = ��

1 + 
����1 + 
����� 

Thus, we may derive the general expression 

log���~ log��� +
� − ��

2
F
���

���

 

Simplifying the above equation and plugging �� and �� back in, as of time �� we have  

 ����

	~ 	�
�
��
�

exp�� − ��

2
( ���

��

� 
(13) 
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Equation (13) is the discrete time result based on simple returns 
� .  Compared to its 

counterpart in the continuous time setting (Equation (7)), we note the difference is that the term ���  in Equation (7) is replaced by ∑ 
���
��� .  However, the new term is not easy to solve 

quantitatively.  We need to further transform the equation to continuously compounded daily 

returns. 

Denoting 
̂�  as the continuously compounded daily return, the index levels �� =��exp∑ 
̂��
��� �.  The translation from the continuously compounded LETF return 
̂��  to 
̂�  is 

exp8
̂��9 − 1 = 
̂�� = �
� = �exp
̂�� − 1�.  When Δ� is small, i.e., a day, 
̂� is approximately 

distributed as 


̂�~< �	 − �� 2⁄ �Δ�,�√Δ�� 
 The �� expressed in terms of 
̂� have similar derivations 

log��� 	= 	log��� + 
̂�� − �
̂� 

= log��� + log1 + 
��� − �
̂� 

= log��� + log1 + �
�� − �
̂� 

= log��� + log81 + �exp
̂�� − 1�9 − �
̂� 

= 	log��� +
� − ��

2

̂�� + ⋯ 

The general expression in terms of continuously compounded returns is 

 ����

	~ 	�
�
��
�

exp�� − ��

2
( ̂���

��

� 
(14) 

This equation has the same form as the simple return case (13) except using  
̂� instead of 
�.  

Our analysis is similar to (Avellaneda & Zhang, 2010) in the sense that they also perform a 

discrete analysis. However, their focus on path dependency leads to a different decomposition 

(using realized variance instead of sum of mean squared) which does not allow for the same 

analysis of the tracking error. Using variance is not an optimal method for measuring the 

tracking error as the decomposition adds an error term of magnitude �6Δ����.  In fact, many 

papers on discrete variance modeling directly define ‘realized variance’ as the sum of returns 

without adjusting the mean term. See for example, (Itkin & Carr, 2010).   

The holding period return of the METF ��
�  is still one-to-one mapped to holding period 

returns of the index ��
�  in the discrete time setting.  The mean and standard deviation of METFs 
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remain the same as in the continuous time setting (see Table 1).  When � = 1, the tracking error 

is zero because the returns of LETF and METF are equal to the leverage of the index return by � 

times.  For a term of ��, the tracking error in the discrete time setting is calculated as  �
����� 	!

 = 	 ��8��
� − ��

� 9 

= 	 �� H���
� − 81 + ��

� 9�expH� − ��
2

F
̂���

���

I + 1I 

= ��J�	expHF
̂��

���

I − J1 + expHF
̂��

���

IK�

expH� − ��
2

F
̂���

���

I + 1K 

3.2  Model Implications 

3.2.1  Short-Term Returns 
The holding period return of LETF ��

�  and METF ��
�  can be expressed in terms of sample 

mean and sample variance, as can the tracking error.  Recall the definition of the sample mean 

	
̂�� = �

�
∑ 
̂��

��� , and sample variance L�
̂�� = �

��
∑ 
̂���

��� − �

�	�
∑ 
̂��

��� ��.  

 ����

	~	exp��%�� ̂���exp�� − ��

2
��% − 1�*�� ̂�� + %�� ̂����� 

= exp��%�� ̂�� +
� − ��

2
��% − 1�*�� ̂�� + %�� ̂����� 

(15) 

For METF, using the fact that �� = ��exp8�	
̂��9 the return is solely a function of sample 

mean ����

= 1 + �8exp8�	
̂��9 − 19 
Let’s review some properties about these two statistics: sample mean and sample 

variance (Casella & Berger, 2001). They are both random variables, thus �� is also a random 

variable.  Since 
̂�  are i.i.d. normally variables, the sample mean 	
̂��  is also normally 

distributed 

	
̂��	~<H	 − �� 2⁄ �Δ�, �M��

�
I  

The sample variance follows a N��
�  distribution with � − 1 degrees of freedom 
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� − 1�L�
̂����Δ� ~	N��
�  

In addition, sample mean and sample variance are independent of each other. 

In Equation (15), when Δ� is small, the value � − 1�L�
̂�� dominates �	̅
̂���, thus the 

term �	̅
̂��� can be ignored.  Moreover, the sample variance L�
̂�� is known as an unbiased 

and consistent estimator of ��Δ�.  For long holding periods, as � increases, the sample variance 

converges to ��Δ�: 
� − 1�L�
̂�� + �	
̂���~� − 1�L�
̂�� �⟶�PQQR � − 1� ����~���� 

which makes (15) converge to the continuous time result (7).  

A key difference between the discrete and continuous time analyses is that for the LETF, 

one-to-one mapping between ��
�  and ��

�  no longer holds, and nether does the mapping between ��
�  and ��

� .  This indicates that there are extra tracking errors in the discrete time setting. 

We start our analysis of these errors by evaluating the mean and standard deviation of ��
� .  

 

 +,���
� -~	+ .exp��%�� ̂�� +

� − ��

2
��% − 1�*�� ̂�� + %�� ̂����� − 1/

= 	+ 0exp ��%�� ̂�� +
� − ��

2
%�� ̂����1 ∙ 	+ .exp�� − ��

2
�% − 1�*�� ̂���/ − 1

=

exp �−
����Δ��−4�� + 4��� + 4��� − 4���� − �� + ���� − 4��� − 8� + 4���

8�−���Δ� + ����Δ� + 1� �
√−���Δ� + ����Δ� + 1

∙ �1 − �� − �����Δ��
�
�� − 1 

~exp������exp�−
� − ��

2
����� �1 − �� − �����Δ��
�
�� − 1 

 

(16) 

In Line 2, the expectations are separable because the sample mean and sample variance are 

independent. The last approximation is due to omitting small terms with Δ�, which comes from 

the inclusion of 
��	

�
�	
̂��� in Line 2. In a long term scenario, the additional tracking error 

vanishes.  As ��  increases to infinity, the quantity 1 − � − �����Δ����

	  converges to 
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exp ���	
�

�����.  �D��
� E becomes exp�	��� − 1 which matches the continuous time results in 

Table 1.  

The standard deviation of ��
�  follows a similar derivation 

 
std����

� �~std2exp��%�� ̂��� ∙ exp�� − ��

2
�% − 1�*�� ̂���3 

= exp ���t� −
� − ��

2
������exp���������1 − 2�� − �����Δ��
�
��

− �1 − �� − �����Δ��
��
����� 

(17) 

Again, as t� increases to infinity, std8��
� 9 converges to continuous time result 

Sexp2�	���exp����t�� − 1� as in Table 1. 

We have shown that for short holding periods, the overall mean and standard deviation 

of the holding period return ��
�  is only slightly biased from the continuous time case.  As �� 

increases, the difference vanishes.  For ease of derivation, we use the following notations in the 

remainder of the text. 

� = 1 − � − �����Δ�����  

T = 1 − 2� − �����Δ�����  

 

and 

U = exp ���	
�

��
t
n
�. 

 

3.2.2     The Additional Tracking-Error 
We quantify the magnitude of the additional tracking error introduced in the discrete time 

setting.   When considering “additional” tracking error, we refer to the volatility conditioned 

on given Sn .  This is in contrast to the fact that in the continuous time setting, the conditional 

volatility of ��
�  is zero conditioned on fixed Sn.  Provided that �� = ��exp8�	
̂��9 and is 

independent to L�
̂��, 
 +,���

� 4
�- (18) 
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= +,���
� 		4	�� ̂��- 

~	+ .exp ��%�� ̂�� +
� − ��

2
��% − 1�*�� ̂�� + %�� ̂����� − 15�� ̂��/ 

 

= exp��%�� ̂�� +
� − ��

2
%�� ̂����

∙ + .exp �� − ��

2
�% − 1�*�� ̂��� 5�� ̂��/ − 1 

= exp��%�� ̂�� +
� − ��

2
%�� ̂���� ∙ � − 1 

The conditional mean is slightly different from that in a continuous time setting �DR��
� 	V	�

�
E = exp8��	
̂��9 − 1. We also calculate the conditional standard deviation as 

 std ����
� 6�� ̂��� 

= exp��%�� ̂�� +
� − ��

2
%�� ̂����

∙ std2exp�� − ��

2
�% − 1�*�� ̂��� 7�� ̂��3 

= exp��%�� ̂�� +
� − ��

2
%�� ̂���� ∙ std�exp�� − ��

2
��Δ�8�
�

� �� 

= exp��%�� ̂�� +
� − ��

2
%�� ̂���� ∙ 9: − �� 

(19) 

The mean tracking error conditioned on	��	(or		
̂��, or ��
�) is therefore 

�D��
� − 	��

� V	��E = �exp8��	
̂��9 − exp ���	
̂�� + ��	

�
�	
̂���� ∙ � − � + 1. 

Since ��
�  is a constant conditioned on ��, the conditional standard deviation of tracking error is 

the same as that of ��
� . 

For a concrete example, we set 	 = 10%, � = 30%	and �� equal to 15 business days (3 

weeks, �� = 15Δ�).  We plot in Figure 4 (a) and (b) the tracking error together with the deviation 

bands.  We use ��,����
�  to specifically indicate the continuous time result (7): ��,����

� =

���
��
�� exp ���	

�
���� − 1. Figure 4 (b) is based on simulated values. 
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As we observe in the figure, the conditional mean is not identical to the one in the 

continuous time results. Even in a 3 week short time period, LETFs yield returns with noise a 

magnitude of ±3% as a result of daily rebalancing.  The magnitude increases sharply with the 

underlying volatility.  For instance, when the underlying volatility changes to 50%, LETFs could 

yield a ±5% difference in 3 weeks.  Considering scenarios when tracking error is small in 

continuous time setting, i.e., when ��
�  is roughly ±�S��, of the tracking error magnitude, refer 

to Table 2, which measures the weighted average conditional standard deviation with the 

distribution of 	��.   

 

Figure 4: Figure (a) plots the tracking error $	�
� − $	�


  versus index return $	�
� .  The red 

line is the tracking error in continuous time.  The blue line and the green lines are the mean 
and 90% confidence interval in discrete time.  Figure (b) illustrates the same story using 
simulated results, in which we use 10,000 simulation runs. 
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(a) Numerical Results

 

(b) Simulation Results 

 

We analyze the deviation of ��
�  and ��,����

� , the deviation of discrete time versus 

continuous time.  Using Equation (16) and results in Table 1, we calculate the expected value as 

 +,���
� − ���,����

� - 
~	exp������ �exp�−

� − ��

2
����� �1 − �� − �����;��
�
�� − 1� 

= exp������ ��< − 1� 

 

(20) 

The standard deviation is calculated as 

 std����
� − ���,����

� � 

~std2exp��%�� ̂���	�exp�� − ��

2
�% − 1�*�� ̂��� − <�3 

= <
��exp�������� + 2���: − 2exp�������� + 2����<
+ exp�������� + 2���<� − exp�2�������

+ 2exp�2������< − exp�2�����<���� 

(21) 
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Both of the derived quantities are essentially an expectation of the conditional mean and 

standard deviation, i.e., �D��
� − ��,����

� E = 	� W	�D��
� │��EX − �D��,����

� E.  Table 2 lists the 

overall standard deviation between ��
�  and ��,����

� .  The values are sensitive to the underlying 

index volatilities and the leverage size.  When leverage = −3 the situations become more 

pronounced.  For a 90% confidence band surrounding the mean, we may consider using two 

times the standard deviation.  

Table 2: Standard deviation of LETFs returns $	�

 − $	�,���	


 .  The volatilities are chosen 
between 10% and 70%, which is the range of observed volatilities from the 90 ProShares 
LETFs. 

Leverage 
Volatility -3 -2 -1 2 3 

10% 0.12% 0.06% 0.02% 0.02% 0.06% 
20% 0.50% 0.25% 0.08% 0.09% 0.26% 
30% 1.14% 0.57% 0.19% 0.19% 0.59% 
40% 2.06% 1.01% 0.34% 0.35% 1.07% 
50% 3.30% 1.60% 0.53% 0.55% 1.71% 
60% 4.89% 2.33% 0.76% 0.80% 2.54% 
70% 6.90% 3.22% 1.04% 1.10% 3.58% 

  

Finally, we analyze the distribution of the tracking errors. As we have pointed out 

previously, METFs only depend on ending levels of the underlying index, independent of the 

sample path. The expected value of the tracking error: 

 +,���
	 − ���

� - 
~		+ .1 + x�exp�%�� ̂��� − 1� − exp��%�� ̂�� +

� − ��

2
�% − 1�*�� ̂���/ 

= 		�exp����� − �� − 1� − exp�������< 

(22) 

The standard deviation of the tracking error: 

 std����
	 − ���

� � 

~			std2�exp�%�� ̂��� − ��= ��%�� ̂�� +
� − ��

2
�% − 1�*�� ̂���3 

(23) 
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= 	
>
?@

exp�2���� − �� − ���������exp��������: − ���
+��exp�2�����exp������ − 1� −

2��< �exp�1

2
���� + 1����� + 2���< − exp��� + 1������A

BC
�
�

 

 

Table 3: Standard deviation of total tracking error, still using the volatility range from 
10% to 70%. 

Leverage 
Volatility -3 -2 -1 2 3 

10% 0.54% 0.27% 0.09% 0.09% 0.28% 
20% 2.09% 1.05% 0.35% 0.36% 1.09% 
30% 4.68% 2.35% 0.79% 0.81% 2.45% 
40% 8.34% 4.17% 1.39% 1.44% 4.41% 
50% 13.10% 6.51% 2.17% 2.27% 6.99% 
60% 19.01% 9.40% 3.13% 3.30% 10.26% 
70% 26.14% 12.83% 4.26% 4.55% 14.30% 

  

The overall tracking error gap is quite large.  Comparing Table 2 and Table 3 entry by 

entry, we observe that the tracking error due to discrete time rebalancing is roughly 25% of the 

total tracking error.  

4  Empirical Analysis 
 

In this section, we use historical data to verify the patterns we derived in the previous section 

and analyze the potential deviation between the discrete time LETF’s return (��
� ) and its 

corresponding continuous time return 8��,����
� 9 .  The discrete time return represents the 

realized total return of a LETF which performs daily portfolio rebalances.  As we have shown 

previously, the continuous time return ��,����
�  is governed by Equation (7), which requires 

three inputs: realized underlying index total return, leverage size, and expected volatility of the 

underlying index. 

 We collect 90 LETFs issued by ProShares between June 20, 2006 (the date of their first 

LETF offering) and June 30, 2009.  Investors hold these funds on average for fairly short 
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periods of time: 39 of the funds have average holding periods of less than 1 month10 and 79 of 

the funds have an average holding period of less than six months.11  The fund with the longest 

average holding period is the ProShares Ultra Short MSCI Mexico (SMK) with 520 days; the 

fund with the shortest average holding period is ProShares Ultra Pro S&P 500 fund with less 

than 1 day.  

In Table 4 we present the holding periods (Start Date/End Date) during which there is the 

largest discrepancy in returns (maximum of ��,����
� − ��

�  ) between the continuous and discrete 

cases.  The length of these holding periods is fixed at the corresponding average turnover days of 

each fund.  We do not report such time periods for 39 ProShares funds for which the average 

turnover is less than 1 month.  The funds are sorted in an increasing order by average turnover 

days.  

In practice, LETFs rebalance their portfolio daily and generate returns modeled in the 

discrete time setting.  ��
�  reflects the actual total return for the holding period.  For continuous 

time returns, we use Equation (7) to compute ��,����
� .  The expected volatility in the formula is 

unobservable and thus has to be estimated.  We calculate the expected volatility as the trailing 

one year return volatilities before the start date of each period.  As noted in the previous sections, 

the continuous time return ��,����
�  should represent the LETF returns when the portfolio is 

rebalanced continuously.  

  

                                                 
10 The average turnover is the average ratio of daily trading volume divided by daily shares outstanding. 

11 See (Guedj, Li, & McCann, 2010) of an analysis of the distribution of holding periods.  
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Table 4: Of all the 90 ProShares LETFs we analyze, 39 funds have average turnover less 
than 23 business days (a month).  We calculate the holding period (number of turnover 
days) in which LETFs incur the largest return discrepancy with the continuous time 
setting.  The discrete time return is the fund’s realized holding period return.  The 
continuous time return is based on the realized return of the underlying index, leverage, 
and expected volatility (Equation (7)). The expected volatility (over a trailing year) and 
realized volatility (during the time period) are also reported. 

Fund Lever
age Start Date End Date ��

�
,����

�  ��
�

�  Expected 
Volatility 

Realized 
Volatility Turnover 

DUG -2 10/8/2008 10/10/2008 50.56% 37.78% 22.79% 35.70% 2 

QID -2 9/25/2008 9/29/2008 27.16% 20.16% 14.56% 107.76% 2 

QLD 2 4/12/2007 4/16/2007 5.87% 2.11% 13.93% 28.37% 2 

TWM -2 10/10/2008 10/15/2008 8.17% -1.00% 17.04% 150.84% 3 

GLL -2 3/13/2009 3/18/2009 7.59% -5.15% 30.02% 16.53% 3 

UYG 2 9/15/2008 9/19/2008 41.38% 24.00% 10.69% 140.18% 4 

UWM 2 12/1/2008 12/5/2008 22.17% 18.05% 17.04% 64.38% 4 

SDS -2 10/8/2008 10/14/2008 -2.65% -9.77% 10.40% 127.16% 4 

DXD -2 10/3/2008 10/10/2008 49.18% 39.05% 10.13% 37.86% 5 

SCO -2 11/28/2008 12/5/2008 75.58% 46.52% 46.81% 53.35% 5 

UCO 2 12/24/2008 1/2/2009 71.75% 46.49% 46.81% 82.84% 5 

SSO 2 9/29/2008 10/6/2008 -8.77% -13.16% 10.18% 60.89% 5 

DDM 2 10/10/2008 10/20/2008 20.17% 11.74% 10.03% 103.70% 6 

SRS -2 11/20/2008 12/1/2008 -11.76% -36.40% 14.28% 199.84% 6 

AGQ 2 5/4/2009 5/13/2009 34.49% 15.10% 50.39% 47.89% 7 

MZZ -2 10/3/2008 10/15/2008 52.12% 38.05% 13.44% 97.37% 8 

XPP 2 7/15/2009 7/28/2009 27.56% 20.06% 60.94% 24.84% 9 

EET 2 8/19/2009 9/1/2009 4.04% -2.77% 43.04% 18.88% 9 

MVV 2 11/20/2008 12/8/2008 53.56% 48.70% 12.99% 82.78% 11 

SKF -2 9/19/2008 10/7/2008 93.86% 40.51% 10.69% 108.34% 12 

DOG -1 9/23/2008 10/10/2008 28.37% 23.36% 10.03% 54.65% 13 

UGL 2 1/29/2009 2/24/2009 20.95% 10.93% 30.02% 25.80% 17 

TBT -2 10/13/2008 11/5/2008 1.03% -4.45% 12.39% 19.24% 17 

USD 2 11/20/2008 12/16/2008 65.09% 50.22% 22.44% 72.61% 17 

DIG 2 10/10/2008 11/4/2008 52.90% 36.11% 22.79% 135.72% 17 

SDD -2 10/1/2008 10/27/2008 121.24% 90.67% 15.57% 75.02% 18 

EFU -2 10/2/2008 10/28/2008 88.85% 19.58% 13.21% 78.45% 18 

SSG -2 10/31/2008 12/1/2008 73.37% 48.16% 22.44% 82.13% 20 

SKK -2 9/26/2008 10/27/2008 150.56% 114.49% 17.91% 78.77% 21 

SJH -2 9/26/2008 10/27/2008 140.56% 97.18% 15.97% 79.61% 21 

SH -1 9/26/2008 10/28/2008 28.86% 21.16% 10.18% 88.67% 22 
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URE 2 11/20/2008 12/23/2008 107.25% 60.98% 14.28% 153.36% 22 

SMN -2 9/25/2008 10/27/2008 233.22% 144.79% 18.46% 106.78% 22 

PSQ -1 9/19/2008 10/22/2008 40.81% 30.89% 13.93% 80.63% 23 

 

There are several possible explanations for the discrepancies noted in Table 4.  First, is 

the difference between discrete and continuous rebalancing in short horizons. This is the 

argument we develop in the model in the previous section.  We demonstrated that ��
�  is crucially 

dependent on the realized volatility during the holding period.  This volatility could be very 

different from the expected long run volatility.  As the table shows, in most situations, the 

realized volatility in the holding period becomes large, thus deteriorating the performance of 

LETFs. 

Second, LETFs imperfectly track their reference indexes. The results in Table 4 show 

that occasionally funds incur large tracking error compared to the underlying index; for 

example, FXP’s return on Oct 15, 2008 was -17.1%, while implied from the index, the 

continuous rebalanced return should be 28.9%.    For those funds with short holding periods (< 3 

days) in the table, the funds with large discrepancy in �� versus ��
�  is primarily due to the 

imperfect tracking.  In general, LETFs can maintain a stable leverage ratio fluctuating around the 

target leverage ratio. 

Third, index volatility is time-varying and we have assumed constant volatility in the 

model.  During a short time interval, the realized volatility, which crucially affects the 

performance of LETF returns, would be well-biased from the average volatility.  Incorporation 

of more sophisticated stochastic volatility models to handle this issue could be an informative 

direction for future research. 

These empirical results highlight the two main results of our model.  First, continuous 

and discrete time models provide significantly different assessments of LETFs  for short holding 

periods. LETFs rebalance their position only once a day, and the continuous model implicitly 

assumes there is a continuous rebalancing.  On days where there are large returns there is a 

non-trivial difference between these assumptions.  Second, this example highlights the 

potentially large difference between theoretical and realized volatility, and its impact on the 

expectation versus actual deviation between the LETF and a fixed-leveraged investment.  
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5    Conclusion 
 

Buy and hold investors in LETFs wish to obtain leveraged holding period returns of the 

underlying index, which we refer to as a fixed-initial-leverage investment strategy. However, 

LETFs rebalance their portfolios daily, thus obtaining only discretized leveraged exposure.  

This creates a potentially significant discrepancy in expected and realized returns, even 

suffering losses in LETFs while the underlying index gains. 

We have presented quantitative models of tracking errors between LETFs and similar fixed-

initial-leverage investment strategies. In supplement to well analyzed long term tracking 

deviations, we focus on addressing short term tracking uncertainties. We separated the analysis in 

continuous time and discrete time settings. Compared to the continuous time settings, discrete 

time models more accurately portray real life daily rebalancing. Although the two have slight 

differences, especially for short holding periods, there are additional tracking errors in the 

discrete time rebalancing. The additional error introduces a 0.2% to 5% difference in holding 

period returns over 3 weeks. We also qualitatively analyzed the additional error or uncertainties 

in discrete time models showing that they account for 25% of the total tracking error. 

Issuers recommend LETFs for short holding periods. Indeed, almost half of the LETFs 

surveyed in the paper have average holding periods o f  less than a month. LETFs are assumed 

to be able to track a margin account in continuous time models, but in reality, the discrete 

nature of rebalancing introduces tracking errors which are potentially substantial even during 

short holding periods. This suggests that the optimal holding time for LETFs may be longer 

than current recommendations would indicate. 
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